Medical Policy


Subject: Wireless Capsule for the Evaluation of Suspected Gastric and Intestinal Motility Disorders
Document #: MED.00090 Publish Date:    08/29/2018
Status: Reviewed Last Review Date:    07/26/2018


This document addresses a wireless capsule for the evaluation of suspected gastric and intestinal motility disorders (SmartPill™ Motility Testing System [Medtronic, Minneapolis, MN]). The capsule was designed to measure pH, temperature and pressure throughout the gastrointestinal tract and transmits measurements via radio signals to an external recording device. In the stomach, the SmartPill has been used to assess gastric emptying in individuals with suspected gastroparesis. In the intestine, the SmartPill has been used to assess small and large bowel transit times in those with chronic constipation or other motility disorders. The device is also referred to in this document as a wireless motility capsule (WMC).

Position Statement

Investigational and Not Medically Necessary:

A wireless capsule for the evaluation of suspected gastric motility disorders (SmartPill Motility Testing System) is considered investigational and not medically necessary for all conditions.

A wireless capsule for the evaluation of suspected intestinal motility disorders (SmartPill Motility Testing System) is considered investigational and not medically necessary for all conditions.


Wireless Motility Capsule for the Evaluation of Suspected Gastroparesis

No published studies have reported the diagnostic accuracy of the WMC compared with gastric emptying scintigraphy (GES) in individuals with suspected gastroparesis, or have reported the impact on clinical outcomes when WMC versus GES are used to diagnose gastroparesis.  Several preliminary comparative studies have been published, including an investigation by Kuo and colleagues (2008) which enrolled 87 healthy subjects and 61 individuals with known gastroparesis. Participants simultaneously ingested the wireless capsule and a radiolabeled meal, permitting a head-to-head comparison. The investigators did not indicate whether outcomes were interpreted in a blinded fashion. At 4 hours the correlation between the two techniques was 0.73, which exceeded the prespecified target correlation.  In a secondary analysis of data from 100 study participants, reported by Sarosiek and colleagues (2010), gastric emptying time (GET), colon transit time (CTT) and whole gut transit times (WGTT) but not small bowel transit time (SBTT) were noted to be longer in gastroparetics than in healthy controls. These studies were limited in that they included healthy individuals and those with known gastroparesis and not individuals with suspected gastroparesis.

Hasler and colleagues (2017) compared WMC and GES in individuals with suspected gastroparesis, but did not report diagnostic accuracy, the impact on management decisions or health outcomes. In the study, 209 individuals with gastroparesis symptoms for at least 12 weeks with no evidence of organic disease underwent WMC and GES on different days. Individuals ceased taking medications prior to WMC testing. Blinding was not discussed. The overall agreement between GET and delayed 4-hour scintigraphic retention was 52.8% (kappa, 0.12). Agreement between GET and 2-hour scintigraphic retention was 58.7% (kappa, 0.16). The study investigators noted that device agreement was lower than that in the earlier study by Kuo and colleagues (2008) and hypothesized that this difference may be due in part to the tests being performed on separate days in the current investigation whereas they were done on the same day in the Kuo study.

Additional studies have addressed the use of the wireless motility capsule as a research tool in studying such parameters as intragastric pH (Hasler, 2008) or antroduodenal manometry (Cassilly, 2008; Kloetzer, 2010).

A 2013 comparative effectiveness review by the Agency for Healthcare Research and Quality (AHRQ) identified 7 studies comparing WMC and gastric scintigraphy for diagnosing gastroparesis. Although the AHRQ report found that the diagnostic accuracy of WMC and GES were similar, the strength of evidence (SOE) was determined to be low which indicated “low confidence that the evidence reflects the true effect”. The main limitations contributing to the low SOE were that participant eligibility criteria and criteria for positive test findings were not clearly pre-specified. Moreover, most studies had limited duration of follow-up.

Wireless Motility Capsule for the Evaluation of Suspected Chronic Constipation

Chronic constipation may be associated with a prolonged CTT or WGTT, both of which are typically measured using radiopaque markers (ROM). Validation of the wireless motility capsule to evaluate CTT or WGTT requires directly comparative studies with conventional ROM and blinded interpretation of results. In addition, the diagnosis of chronic constipation is based predominantly on clinical symptoms; therefore, studies should ideally document how measurements of transit times contribute to management of the condition (i.e. clinical utility).

The largest study was reported by Camilleri and colleagues (2010) and compared the wireless motility capsule to ROM measurements of colon transit. Of 208 subjects recruited, 180 individuals with symptoms of self-reported constipation were enrolled in the multicenter trial. The study participants ingested both the wireless motility capsule and ROM. After exclusions and missing data, the assessment of CTT was based on comparisons between WMC and ROM in 157 subjects, and comparison between small and large bowel transit time (SLBTT) by WMC and ROM in 154 subjects. Study results indicated that 59 of 157 subjects had delayed ROM colon transit. Overall device agreement was reported as 86%. There were correlations reported between ROM and WMC transit and between ROM and combined SLBTT. Estimates of CTT and SLBTT were calculated by a team reported as being blinded to the ROM transit results. Adverse events reported during the trial included the inability of 2 subjects to swallow the wireless motility capsule and 1 case each of abdominal cramping, nausea and loose or soft stools recorded as possibly related to the wireless motility capsule. The authors noted potential pitfalls of using all capsules to measure gut transit, including: “technical failures, inability to swallow the capsule, the potential for non-passage of or intestinal obstruction by the capsule in stenosing gut disorders, and greater cost relative to the ROM transit method.”

A smaller study by Rao and colleagues (2009) compared transit times in both constipated (n=78) and healthy subjects (n=87) measured simultaneously with the WMC and ROM. The WMC estimated the SBTT based on pH changes as the capsule entered the duodenum (increase in pH) and then passed into the cecum (decrease in pH). The CTT was based on the time interval between entry into the cecum and the capsule exit from the body. Serial plain abdominal films were used to assess the movement of ROM. Correlation of the wireless motility capsule’s colonic transit with ROMs expelled on day 2/day 5 was r=0.74/r=0.69 in the constipated subjects, and r=0.70/r=0.40 in the control group, respectively. This study did not report whether or not the results were interpreted in a blinded fashion, and there was no discussion of how the diagnostic information was used in the management of the condition.     

A 2013 comparative effectiveness review by the AHRQ identified 5 studies comparing WMC and ROM for diagnosing slow-transit constipation. Although the AHRQ report found that the diagnostic accuracy of WMC and ROM were similar, the strength of evidence (SOE) was determined to be low which indicated “low confidence that the evidence reflects the true effect”. The determination of low SOE was due to several factors including the retrospective nature of the studies, uncertainty that the studies included the appropriate spectrum of participants, limited follow-up duration of most studies and unclear blinding of outcomes.

Wireless Motility Capsule for the Evaluation of Suspected Upper and Lower Gastrointestinal (GI) Motility Disorders

Several retrospective studies have been published. Rao and colleagues (2010) evaluated the WMC in 86 individuals with suspected upper and lower gastrointestinal dysmotility. To be eligible, subjects need to have symptoms of dysmotility (abdominal pain, nausea, vomiting, bloating, fullness after meals, constipation, straining, feeling of incomplete evacuation) and normal endoscopic/radiologic evaluations. The diagnostic utility of the WMC was retrospectively assessed by examining device agreement and new information compared with conventional mobility tests (CMT). Study subjects were classified into two subgroups on the basis of major symptom(s): lower GI (LGI=50) and upper GI (UGI=36). Clinical suspicion was confirmed in 52% and 66% of study subjects, respectively, and the authors stated there was good device agreement between the wireless motility capsule and CMT in 76% and 81% in the LGI and UGI groups, respectively. There was new diagnostic information with the wireless motility test in 53% of the LGI (p=0.006) and 47% of the UGI group (p=0.001). The wireless motility capsule detected generalized motility disorder in 44 (51%) subjects and influenced management in 30% of LGI and 88% of UGI subjects. Study limitations noted by the authors included potential bias of a retrospective study, the inclusion of subjects with more severe symptoms than are typically seen at a tertiary care center, and the tests were not carried out simultaneously which could result in discrepancy between the test results.

Kuo and colleagues (2011) evaluated the WMC in a retrospective study of 83 subjects with suspected gastroparesis, intestinal dysmotility, or slow transit constipation. Databases at two referral centers for gastrointestinal motility were accessed. Wireless motility capsule transits were analyzed and isolated regional delays were observed in 32% (9% stomach, 5% small bowel, 18% colon). Transits were normal in 32% and showed generalized delays in 35%. Symptom profiles were similar with normal transit, isolated delayed gastric, small intestinal and colonic transit, and generalized delay. Compared to conventional tests, WMC showed discordance in 38% and provided new diagnoses in 53%. Wireless motility testing reportedly influenced clinical management in 65 subjects (67%) (new medications 60%; modified nutritional regimens 14%; surgical referrals 6%) and eliminated needs for testing not already done including gastric scintigraphy (17%), small bowel barium transit (54%), and radiopaque colon marker tests (68%). A significant limitation of this study was that all subjects were from two academic centers specializing in managing severe dysmotility syndromes and would therefore differ from a representative community sample. Also of note, this retrospective investigation involved analyses of preexisting databases and data recording was not standardized, therefore reporting of a lack of a specific symptom or test result may not be the equivalent of symptom absence or non-performance of the test.

Arora and colleagues (2015) performed a single center retrospective chart review of 161 individuals who underwent wireless motility capsule testing. Wireless motility capsule testing was abnormal in 109 (67.7%) subjects. From the abnormal cases, 17 (15.6%) individuals had isolated delayed gastric emptying, 13 (11.9%) had isolated delayed small bowel transit, and 25 (22.9%) had isolated delayed large bowel transit. Multiregional (upper and lower) dysmotility was diagnosed in 54 (49.5%) cases. Of note, the presence or absence of various individually-reported symptoms by history did not predict an abnormal study. The authors concluded that “wireless motility capsule can be a useful diagnostic test in patients with suspected multiregional GI dysmotility.” However, they also reported that a limitation of the study was that that they “did not attempt to assess if the results of the wireless motility capsule study changed the patients’ outcome or management as the information needed was difficult to obtain in our settings and may be unreliable.”

A retrospective chart review of 100 diabetics who had undergone wireless motility capsule testing at a single institution between the years 2010 to 2015 was performed by Rouphael and colleagues (2017). Of the original 103 subjects, 3 were excluded due to either a retained capsule (n=1) or missing data secondary to device failure (n=2). A total of 72% of subjects had abnormal wireless motility capsule testing, of which 40% (n=29) had multiregional dysmotility with 6.9% (n=5) having delayed transit in all three GI tract segments. Information related to subsequent clinical management post testing was available for 47 subjects. The remaining 53 subjects were excluded from the analysis due to loss to follow-up or incomplete information related to treatment change or response to therapy. Of the 47 subjects, wireless motility capsule testing was abnormal in 70% (n=33) and treatment changes were made in 73% (n=24) of those with gut dysmotility. Limitations of this study included the retrospective nature of the analysis and small sample size.

Other Considerations

A 2008 consensus statement of the American Neurogastroenterology and Motility Society indicates that the impact of the device on the management of individuals with presumed upper GI dysmotility has not been studied.

Rao and colleagues (2011), in a position paper of the American and European Neurogastroenterology and Motility Societies reviewed diagnostic tools used to assess regional or WGTT including the wireless motility capsule. The authors recommended the wireless motility capsule for the following:

Confounding issues or disadvantages involving the wireless motility capsule reported in the position paper included:

The recommendations made by the American and European Neurogastroenterology and Motility Societies for the wireless motility capsule are limited because there is insufficient supporting evidence to fully establish the clinical utility or accuracy of the SmartPill. In addition, significant confounding issues or disadvantages of the device have been reported.


Studies evaluating the usefulness of wireless motility capsule testing in suspected gastric motor disorders have been limited by study design limitations and some studies have small sample sizes. Larger well designed studies are needed that compare results with use of this device (using an established protocol and cutoff values) with the current standard test. Evaluation of cases with discordant results would be of particular value. Ideally, these studies should be linked to therapeutic decisions and to meaningful clinical outcomes.


Gastroparesis is a “syndrome of objectively delayed gastric emptying in the absence of mechanical obstruction and cardinal symptoms…” The symptoms include “early satiety, postprandial fullness, nausea, vomiting, bloating, and upper abdominal pain.” Similar symptoms can be present with other conditions such as peptic ulcer and functional dyspepsia and thus the combination of symptoms and documentation of delayed gastric emptying is needed to confirm the diagnosis of gastroparesis. Gastric emptying scintigraphy of a solid-phase meal is considered the standard method of identifying delayed gastric emptying and gastric retention at 4 hours is the most reliable parameter with which to quantify gastric emptying. Breath testing, such as those that use 13 C-octanoate or –spirulina, are a potential alternative to gastric emptying scintigraphy. However, an American College of Gastroenterology 2013 clinical guideline states that breath tests require additional validation. (Camilleri, 2013).

Another potential option for evaluation of suspected gastroparesis is use of a WMC. A WMC device, known as the SmartPill Motility Testing System (Medtronic), has been cleared for marketing by the U.S. Food and Drug Administration (FDA). According to the FDA 510(k) documents, the SmartPill is indicated for use in evaluating individuals with suspected delayed gastric emptying (gastroparesis) as well as for the evaluation of colonic transit in those with chronic constipation. The SmartPill measures pH, pressure and temperature throughout the gastrointestinal tract. This data is then transmitted from the capsule via radio signal to an individually-worn data receiver and downloaded to a computer in the physician’s office for analysis and review. The recorded physiological measurements are used to determine GET, total transit time, and combined small-large bowel transit time. In addition, pressure contraction patterns from the antrum and duodenum are used to calculate motility indices.



Gastric Emptying Scintigraphy (GES): A type of test which uses a radio-labeled meal to measure gastric emptying.


Gastroparesis: A condition where there is delayed gastric emptying and characteristic gastrointestinal symptoms.



The following codes for treatments and procedures applicable to this document are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

When Services are Investigational and Not Medically Necessary:
When the code describes a procedure indicated in the Position Statement section as investigational and not medically necessary.




Gastrointestinal transit and pressure measurement, stomach through colon, wireless capsule, with interpretation and report



ICD-10 Diagnosis



All diagnoses


Peer Reviewed Publications:

  1. Arora Z, Parungao JM, Lopez R, et al. Clinical utility of wireless motility capsule in patients with suspected multiregional gastrointestinal dysmotility. Dig Dis Sci. 2015; 60(5):1350-1357.
  2. Camilleri M, Thorne NK, Ringel Y, et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipation. Neurogastroenterol Motil. 2010; 22(8):874-882, e233.
  3. Cassilly D, Kantor S, Knight LC, et al. Gastric emptying of a non-digestible solid: assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphy. Neurogastroenterol Motil. 2008; 20(4):311-319.
  4. Hasler WL, May KP, Wilson LA, et al. Relating gastric scintigraphy and symptoms to mobility capsule transit and pressure findings in suspected gastroparesis. Neurogastroenterol Motil. 2018; 30(2): 1-12.
  5. Hasler WL. The use of SmartPill for gastric monitoring. Expert Rev Gastroenterol Hepatol. 2014; 8(6):587-600.
  6. Hasler WL, Coleski R, Chey WD, et al. Differences in intragastric pH in diabetic vs. idiopathic gastroparesis: relation to degree of gastric retention. Am J Physiol Gastrointest Liver Physiol. 2008; 294(6):G1384-1391.
  7. Kloetzer L, Chey WD, McCallum RW, et al. Motility of the antroduodenum in healthy and gastroparetics characterized by wireless motility capsule. Neurogastroenterol Motil. 2010; 22(5):527-533, e117.
  8. Kuo B, Maneerattanaporn M, Lee AA, et al. Generalized transit delay on wireless motility capsule testing in patients with clinical suspicion of gastroparesis, small intestinal dysmotility, or slow transit constipation. Dig Dis Sci. 2011; 56(10):2928-2938.
  9. Kuo B, McCallum RW, Koch KL, et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment Pharmacol Ther. 2008; 27(2):186-196.
  10. Parkman HP. Assessment of gastric emptying and small-bowel motility: scintigraphy, breath tests, manometry, and SmartPill. Gastrointest Endosc Clin N Am. 2009; 19(1):49-55, vi.
  11. Rao SS, Kuo B, McCallum RW, et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin Gastroenterol Hepatol. 2009; 7(5):537-544.
  12. Rao SS, Mysore K, Attaluri A, Valestin J. Diagnostic utility of wireless motility capsule in gastrointestinal dysmotility. J Clin Gastroenterol. 2011; 45(8):684-690.
  13. Rouphael C, Arora Z, Thota PN, et al. Role of wireless motility capsule in the assessment and management of gastrointestinal dysmotility in patients with diabetes mellitus. Neurogastroenterol Motil. 2017 Apr 26; [Epub ahead of print].
  14. Sarosiek I, Selover KH, Katz LA, et al. The assessment of regional gut transit times in healthy controls and patients with gastroparesis using wireless motility technology. Aliment Pharmacol Ther. 2010; 31(2):313-322.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. Camilleri M, Bharucha AE, di Lorenzo C, et al. American Neurogastroenterology and Motility Society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol Motil. 2008; 20(12):1269-1282.
  2. Camilleri M, Parkman HP, Shafi MA, et al. American College of Gastroenterology. Clinical guideline: management of gastroparesis. Am J Gastroenterol. 2013; 108(1):18-37.
  3. Rao SS, Camilleri M, Hasler WL, et al. Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol Motil. 2011.
  4. Stein E, Berger Z, Hutfless S, et al. Wireless Motililty Capsule Versus Other Diagnostic Technologies for Evaluating Gastroparesis and Constipation: A Comparative Effectiveness Review [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013 May. Available at: . Accessed on April 26, 2018
  5. U.S.  Food and Drug Administration. 510(k) Summary. January 10, 2017. Available at: Accessed on April 26, 2018.
Websites for Additional Information
  1. American Neurogastroenterology and Motility Society.  Information on GI mobility disorders. Available at:. Accessed on May 21, 2018.

SmartPill GI Monitoring System
SmartPill Motility Testing System
Wireless Capsule for Measuring Gastric Emptying
Wireless Motility Capsule (WMC)

The use of specific product names is illustrative only.  It is not intended to be a recommendation of one product over another, and is not intended to represent a complete listing of all products available. 

Document History






Medical Policy & Technology Assessment Committee (MPTAC) review. The document header wording updated from “Current Effective Date” to “Publish Date”. Rationale, Background/Overview, Definitions and References sections updated.



MPTAC review. Rationale and References sections updated.



MPTAC review. Description, Rationale, Background, Reference and Index sections updated. Position statement updated with new device name (SmartPill GI Monitoring System changed to SmartPill Motility Testing System). Removed ICD-9 codes from Coding section.



MPTAC review. Description, Rationale, Background and Reference sections updated.



MPTAC review. Description, Rationale and Reference sections updated.



MPTAC review. Rationale and Reference sections updated.



Updated Coding section with 01/01/2013 CPT changes; removed 0242T deleted 12/31/2012.



MPTAC review. Rationale, Reference and Index sections updated.



MPTAC review. Rationale, Definition and Reference sections updated.



MPTAC review. Updated title of document by removing brand name. Clarified initial position statement by adding the word “motility”. Description, Rationale, Background, References and Index updated. Updated Coding section with CPT changes effective 01/01/2011.



MPTAC review. Description, rationale coding and references updated. Original position statement updated to address a wireless capsule for the evaluation of suspected gastric disorders. Added a position statement to address a wireless capsule for the evaluation of suspected intestinal motility disorders. Updated title of document to include intestinal motility.



MPTAC review. Position statement clarified by adding the wording “A wireless capsule for measuring gastric emptying” to describe SmartPill GI Monitoring System. No change to position stance. Description, rationale, references, and index updated. Definitions added. Title of document changed from “SmartPill GI Monitoring System®” to “Wireless Capsule for Measuring Gastric Emptying (SmartPill GI Monitoring System®)”.



MPTAC review. Rationale and references updated. The phrase “investigational/not medically necessary” was clarified to read “investigational and not medically necessary.”



MPTAC initial document development.