Medical Policy


Subject: Axial Lumbar Interbody Fusion
Document #: SURG.00111 Publish Date:    12/27/2018
Status: Reviewed Last Review Date:    03/22/2018



This document addresses axial or presacral lumbar interbody fusion, a minimally invasive technique in which anterior access to the L4-S1 disc spaces is used for interbody fusion to minimizing damage to muscular, ligamentous, neural, and vascular structures. It is performed under fluoroscopic guidance using specialized instrumentation.


Position Statement

Investigational and Not Medically Necessary:

Axial or presacral lumbar interbody fusion is considered investigational and not medically necessary.


Axial lumbar interbody fusion (axial LIF) is a percutaneous technique utilizing a paracoccygeal approach and trans-sacral instrumentation to stabilize the L4 to S1 or L5 to S1 spinal segment(s) that has been proposed as a method of achieving fusion with reduced complications when compared to open spinal fusion surgery. The AxiaLIF® and the AxiaLIF® II or 2-Level Systems (Baxano Surgical Inc, Raleigh, NC; device acquired in 2015 by TranS1® [Quandary Medical LLC, Denver, CO)]) were cleared for marketing through the U.S. Food and Drug Administration (FDA) 510(k) process. The Premarket Notification (PMA) summaries indicate that the procedures are intended to provide anterior stabilization of the spinal segments as an adjunct to spinal fusion and for assisting in the treatment of degeneration of the lumbar disc, performing lumbar discectomy, or for assistance in the performance of interbody fusion. The AxiaLIF Systems are indicated for use in individuals requiring fusion to treat pseudoarthrosis, unsuccessful previous fusion, spinal stenosis, spondylolisthesis (Grade 1), or degenerative disc disease as defined as back pain of discogenic origin with degeneration of the disc confirmed by history and radiographic studies. The technique is not intended to treat severe scoliosis, severe spondylolisthesis (Grades 2, 3 and 4), tumor, or trauma. In addition, the AxiaLIF is not intended for use in individuals with vertebral compression fractures or other conditions where the mechanical integrity of the vertebral body is compromised. Use of axial lumbar interbody fusion is limited to anterior supplemental fixation of the lumbar spine at L4-S1 or L5-S1 in conjunction with legally marketed facet or pedicle screw systems.

Aryan and colleagues (2008) reported on a case series of 35 individuals with an average follow-up of 17.5 months and pain secondary to lumbar degenerative disc disease, degenerative scoliosis, or lytic spondylolisthesis. In 21 individuals, the AxiaLIF procedure was followed by percutaneous pedicle/screw-rod fixation, 2 individuals had extreme lateral interbody fusion combined with posterior instrumentation, and 10 individuals had a stand-alone procedure. Two individuals had AxiaLIF as part of a larger construct after unfavorable anatomy prevented access to the L5-S1 disc space during open lumbar fusion. A total of 32 individuals had radiographic evidence of stable cage placement and fusion at last follow-up. Patil and colleagues (2010) reported a retrospective review of 50 individuals treated with AxiaLIF. A total of 4 participants (8%) underwent two-level AxiaLIF and 16 participants (32%) underwent a combination of AxiaLIF with another procedure for an additional level of fusion. There were three reoperations due to pseudoarthrosis (n=2) and rectal injury (n=1). Other complications included superficial infection (n=5), hematoma (n=2), and irritation of a nerve root by a screw (n=1). At 12- to 24-month follow-up, visual analog scale (VAS) pain scores decreased from 8.1 to 3.6 (n=48). At an average 12-month follow-up, 47 of 49 participants (96%) with postoperative radiographs achieved solid fusion. There were no significant differences between pre- and postoperative disk space height and lumbar lordosis angle. Although the authors of these two case series reported that AxiaLIF provided a minimally invasive approach for discectomy and interbody fusion and may be of value in those with contraindications to the traditional open anterior approach, further well-designed randomized comparative clinical trials are necessary to demonstrate the safety and efficacy of this surgical procedure.

Tobler and colleagues (2011) published 24-month follow-up results from a large retrospective case series of 156 individuals from four clinical sites who underwent AxiaLIF procedures at L5-S1. Participants with a primary diagnosis of degenerative disc disease (61.5%), spondylolisthesis (21.8%), revision surgery (8.3%), herniated nucleus pulposus (8.3%), spinal stenosis (7.7%), or other (8.3%) had preoperative and postoperative radiographic imaging. Back pain was evaluated on an 11-point scale and functional impairment with the Oswestry Disability Index (ODI) preoperatively and at 24 months. Mean pain scores improved from 7.7 ± 1.6 (n=155) preoperatively to 2.7 ± 2.4 (n=148) at 24 months, reflecting an approximate 63% overall improvement (p<0.001). Mean ODI scores improved from 36.6 ± 14.6% (n=86) preoperatively to 19.0 ± 19.2% (n=78) at 24 months, or approximately 54% (p<0.001). The 2-year clinical success rates on the basis of change relative to baseline of at least 30% were 86% (n=127 of 147) and 74% (n=57 of 77) for pain and function, respectively. The overall radiographic fusion rate at 2 years was 94% (n=145 of 155). Limitations of this study include the retrospective design, lack of a control group, and potential for selection bias as the analysis only reported on participants who had 24 months of follow-up.

Zeilstra and colleagues (2013) conducted a retrospective review of 131 AxiaLIF procedures (L5-S1) performed at a single institution over a timeframe of 6 years. All individuals had undergone a minimum of 6 months (mean, 5 years) of nonsurgical management for symptomatic, refractory degenerative disc disease. Outcome measures included back and leg pain severity, ODI score, working status, analgesic medication use, self-reported satisfaction with the procedure, and complications. Computed tomography (CT) was used to determine postoperative fusion status. No intraoperative complications were reported. At a mean follow-up of 21 months (minimum, 1 year), back pain and leg pain severity decreased by 51% (VAS, 70 to 39) and 42% (VAS, 45 to 26), respectively (p<0.001). With clinical success defined as improvement of 30% or more, 66% of individuals experienced improvement in back and leg pain severity. Employment rate increased from 47% to 64% at follow-up. The fusion rate by CT was 87.8%, 9.2% indeterminate on radiograph, and 3.1% showing pseudoarthrosis. During follow-up, 17 (13.0%) individuals underwent 18 reoperations on the lumbar spine, including pedicle screw fixation (n=10), total disc replacement of an uninvolved level (n=3), facet screw fixation (n=3), facet screw removal (n=1), and interbody fusion at L4-L5 (n=1). A total of 8 (6.1%) reoperations were at the index level. As all individuals underwent fusion at L5-S1, no conclusions can be drawn regarding the effectiveness or safety of a two-level AxiaLIF procedure. Limitations of this study include the retrospective nature of the analysis and the mean follow-up of 21 months. Additional study with long-term analysis is required to determine the durability of AxiaLIF procedures for the treatment of symptomatic, refractory degenerative disc disease. 

Whang and colleagues (2013) retrospectively compared the radiographic fusion rates and adverse events for 96 individuals who underwent L5-S1 interbody fusions through either a standard anterior retroperitoneal approach or use of the AxiaLIF System in conjunction with supplemental posterior fixation. Multiplanar computed tomography images were evaluated by 2 independent observers to assess fusion success at 24 months using a 4-point grading scale. All facility sites were queried regarding the occurrence of any device-related adverse events. According to the radiographic analysis, the arthrodesis rates recorded for the anterior lumbar interbody fusion (ALIF) and AxiaLIF cohorts were 79% and 85%, respectively (p>0.05). The numbers and types of adverse events recorded for these procedures appeared to be similar with one serious intraoperative complication (iliac artery laceration) noted in the ALIF group. Limitations of this study include the retrospective design, lack of randomization of participants or the utilization of other controls to minimize participant or procedural variability, use of a wide variety of adjunctive graft materials that may have affected the results of the radiographic assessment (that is, more individuals in the AxiaLIF group were treated with recombinant growth factors than those in the ALIF group [29 vs. 11, respectively], accounting for the higher fusion rate in the AxiaLIF group), and lack of validated instruments to assess the clinical and functional improvements of individuals following their surgeries.

Schroeder and colleagues (2015) published a systematic review to determine fusion rates and the safety profile of axial interbody arthrodesis of the L5-S1 spine. A total of 15 publications met the inclusion criteria; data was derived from 13 case series and 2 retrospective cohort studies. Based primarily on the retrospective case series, the authors reported a high overall fusion rate (93.15%) and a complication rate of 12.9% associated with axial interbody fusion; however, due to the limited prospective data, the actual fusion rates may be lower and complications rate may be higher than reported in the studies. To date, the authors reported no randomized controlled trials were identified in the scientific literature demonstrating an improvement in net health outcomes using axial interbody arthrodesis compared to standard surgical methods for lumbosacral junction fusion.

Schroeder and colleagues (2016) published a systematic review comparing fusion rates of ALIF, transforaminal lumbar interbody fusion (TLIF), and axial arthrodesis at the lumbosacral junction in adults undergoing surgery for one- and two-level degenerative spine conditions to determine if one technique leads to superior fusion rates. A total of 42 articles and 1507 subjects were included in the review. A difference in overall fusion rates was identified, with a rate of 99.2% (range, 96.4%-99.8%) for a TLIF, 97.2% (range, 91.0%-99.2%) for an ALIF, and 90.5% (range, 79.0%-97.0%) for an axial interbody fusion (p=0.005). In a paired analysis directly comparing fusion techniques, only the difference between a TLIF and an axial interbody fusion was significant. No statistical difference between the three techniques was identified when bilateral pedicle screws supported the interbody fusion (p>0.05). A limitation of this review includes a paucity of high-quality evidence in the form of randomized controlled trials that may account for the unexpectedly high fusion rates. Additionally, of the reviewed studies, only 12 were found to have a low risk of bias. There was significant heterogeneity in how a solid fusion was determined (that is, use of computed tomography versus radiographs). Confounding variables not accounted for in this review included adequacy of the endplate preparation and medical comorbidities of evaluated subjects. Finally, greater than 80% of the studies that reported fusion rates of axial interbody arthrodesis were performed by authors with a known conflict of interest.

Other Considerations

Shen and colleagues (2007) reviewed minimally invasive techniques for lumbar interbody fusion. They noted that experience with the technique is limited and complication rates are unknown. Complications may include perforation of the bowel and injury to blood vessels and nerves as well as infection. They also pointed out the increased need for fluoroscopy and the inability of the surgeon to assess intracanal pathology or visualize the surgical field directly.

In 2005, the American Association of Neurological Surgeons (AANS) published guidelines for interbody techniques for lumbar fusion (Resnick, 2005), stating there was insufficient evidence to recommend a treatment standard. Minimally invasive procedures were not reviewed in the guidelines. The AANS (Mummaneni, 2014) published an update to the 2005 guidelines, reconfirming the previous findings, stating “There is no conclusive evidence demonstrating improved clinical or radiographic outcome based on the different interbody fusion techniques.”

In summary, the peer-reviewed published literature reporting outcomes for axial LIF remains limited to prospective and retrospective case series, review articles, and technical reports (Gerszten, 2012; Lindley, 2011; Marchi, 2012). To date, there are no randomized controlled trials that support the efficacy and safety of axial LIF as a minimally invasive or percutaneous surgical procedure for the treatment of L5-S1 conditions. Evidence supporting improved clinical outcomes such as pain relief, improvement in function, and successful fusion rates is limited. There is insufficient evidence to evaluate whether axial LIF procedures are as effective or as safe as other surgical approaches to lumbosacral interbody fusion, due to the variable natural history of the disorder and the subjective nature of the main outcomes. In addition, there are a relatively large number of adverse event reports including the occurrence of bowel injury (for example, perforation, development of rectocutaneous fistula), chronic infection, and implant migration (136 reports through January 27, 2017), found in a search of the FDA’s Manufacturer and User Facility Device Experience (MAUDE) database for the AxiaLIF System. Randomized controlled studies with larger numbers of participants reporting improved clinical outcomes and a decrease in overall complication rates are needed to determine the long term efficacy and safety of axial LIF for any indication.


The AxiaLIF and AxiaLIF II Level Systems consist of techniques and surgical instruments for creating a pre-sacral access route to perform percutaneous fusion of the L5-S1 or L4-S1 vertebral bodies. The procedure utilizes fluoroscopic guidance for a blunt guide introducer that is passed through a 15-20 millimeter (mm) incision lateral to the coccyx and advanced along the midline of the anterior surface of the sacrum. A guide pin is introduced and tapped into the sacrum. A series of graduated dilators are passed along the guide pin to open a working channel for the passage of instruments. After debulking the nucleus pulposis, bone graft material is injected to fill the disc space. A threaded rod designed to restore disc and neural foramen height is then secured in place. This procedure can be performed at two levels.

Complications after an axial LIF procedure may include perforation of the bowel and injury to blood vessels and/or nerves as well as infection. Since the procedure uses fluoroscopic guidance, the length of a procedure can expose the individual to high doses of radiation.


Anterior: The front surface of the body.

Axial skeleton (as related to the human body): Is comprised of the vertebral column, the spine and much of the skull.

Fluoroscopy: Imaging technique to obtain real-time moving images of the internal structures of the body; this imaging uses an x-ray source and fluorescent screen; modern fluoroscopes couple the screen to an x-ray image intensifier and video camera allowing the images to be recorded and shown on a monitor.

Presacral: Anterior to the sacrum.

Spondylolisthesis: A forward dislocation of one vertebra over the one beneath it producing pressure on spinal nerves.


The following codes for treatments and procedures applicable to this document are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

When services are Investigational and Not Medically Necessary:




Arthrodesis, pre-sacral interbody technique, including disc space preparation, discectomy, with posterior instrumentation, with image guidance, includes bone graft when performed, L5-S1 interspace


Unlisted procedure; spine [when specified as pre-sacral interbody arthrodesis lumbar. L4-L5 interspace with instrumentation, or pre-sacral interbody arthrodesis L4-L5 or L5-S1 interspace without instrumentation]



ICD-10 Procedure



Fusion of lumbar vertebral joint with interbody fusion device, anterior approach, anterior column, percutaneous approach


Fusion of 2 or more lumbar vertebral joints with interbody fusion device, anterior approach, anterior column, percutaneous approach


Fusion of lumbosacral joint with interbody fusion device, anterior approach, anterior column, percutaneous approach



ICD-10 Diagnosis



All diagnoses


Peer Reviewed Publications:

  1. Aryan HE, Newman CB, Gold JJ, et al. Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5-S1 segment: initial clinical and radiographic experience. Minim Invasive Neurosurg. 2008; 51(4):225-230.
  2. Gerszten PC, Tobler W, Raley TJ, et al. Axial presacral lumbar interbody fusion and percutaneous posterior fixation for stabilization of lumbosacral isthmic spondylolisthesis. J Spinal Disord Tech. 2012; 25(2):E36-E40.
  3. Lindley EM, McCullough MA, Burger EL, et al. Complications of axial lumbar interbody fusion. J Neurosurg Spine. 2011; 15(3):273-279.
  4. Marchi L, Oliveira L, Coutinho E, Pimenta L. Results and complications after 2-level axial lumbar interbody fusion with a minimum 2-year follow-up. J Neurosurg Spine. 2012; 17(3):187-192.
  5. Marotta N, Cosar M, Pimenta L, Khoo LT. A novel minimally invasive presacral approach and instrumentation technique for anterior L5-S1 intervertebral discectomy and fusion: technical description and case presentations. Neurosurg Focus. 2006; 20(1):E9.
  6. Patil SS, Lindley EM, Patel VV, Burger EL. Clinical and radiological outcomes of axial lumbar interbody fusion. Orthopedics. 2010; 33(12):883.
  7. Schroeder GD, Kepler CK, Millhouse PW, et al. L5/S1 fusion rates in degenerative spine surgery: a systematic review comparing ALIF, TLIF, and axial interbody arthrodesis. Clin Spine Surg. 2016; 29(4):150-155.
  8. Schroeder GD, Kepler CK, Vaccaro AR. Axial interbody arthrodesis of the L5-S1 segment: a systematic review of the literature. J Neurosurg Spine. 2015; 23(3):314-319.
  9. Shen FH, Samartzis D, Dip EBHC, et al. Minimally invasive techniques for lumbar interbody fusion. Orthop Clin N Am. 2007; 38: 373-386.
  10. Tobler WD, Gerszten PC, Bradley WD, et al. Minimally invasive axial presacral L5-S1 interbody fusion: two-year clinical and radiographic outcomes. Spine (Phila Pa 1976). 2011; 36(20):E1296-E1301.
  11. Whang PG, Sasso RC, Patel VV, et al. Comparison of axial and anterior interbody fusions of the L5-S1 segment: a retrospective cohort analysis. J Spinal Disord Tech. 2013; 26(8):437-443.
  12. Zeilstra DJ, Miller LE, Block JE. Axial lumbar interbody fusion: a 6-year single-center experience. Clin Interv Aging. 2013; 8:1063-1069.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. Mummaneni PV, Dhall SS, Eck JC, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: interbody techniques for lumbar fusion. J Neurosurg Spine. 2014; 21(1):67-74.
  2. Resnick DK, Choudhri TF, Dailey AT, et al. American Association of Neurological Surgeons/Congress of Neurological Surgeons. Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: interbody techniques for lumbar fusion. J Neurosurg Spine. 2005; 2(6):692-699.
  3. U.S. Food and Drug Administration (FDA). 510(k) Premarket Notification Database. TranS1® AxiaLIF® Fixation System. Summary of Safety and Effectiveness. No. K050965. Rockville, MD: FDA. June 14, 2005. Available at: Accessed on February 1, 2018.
  4. U.S. Food and Drug Administration (FDA). MAUDE - Manufacturer and User Facility Device Experience. Available at: Accessed on February 1, 2018.

AxiaLIF System

The use of specific product names is illustrative only.  It is not intended to be a recommendation of one product over another, and is not intended to represent a complete listing of all products available. 

Document History




  12/27/2018 Updated Coding section with 01/01/2019 CPT changes; removed 0195T and 0196T deleted 12/31/2018.



Medical Policy & Technology Assessment Committee (MPTAC) review. Updated Description, Rationale, Background, References and Index sections.



The document header wording updated from “Current Effective Date” to “Publish Date.” Updated Coding section with 01/01/2018 CPT changes; removed 0309T deleted 12/31/2017, added 22899.



MPTAC review. Updated Rationale and References sections.



MPTAC review. Updated Rationale and References sections. Removed ICD-9 codes from Coding section.



MPTAC review. Updated Rationale and References sections. Format changes throughout document.



MPTAC review. Updated Rationale, Background, and References sections.



MPTAC review. Updated Rationale, References, and Index.



Updated Coding section with 01/01/2013 CPT changes.



MPTAC review. Rationale and References updated.



MPTAC review. Rationale and References updated.



MPTAC review. References updated.



MPTAC review. Initial document development.